PM motors for railway applications

Åsa Sandberg, Bombardier

Bombardier* MITRAC* Permanent Magnet(PM) motor Technology realizing the ambitions of Gröna Tåget

Compact and compatible → improved overall vehicle optimization

Improved energy efficiency
 Directly by
 high motor efficiency
 Indirectly by
 high performance density

"A train that

- significantly boosts the competitiveness of rail,
- is fit for the rigorous Nordic conditions,
- with improved environmental performance,
- and an interior design to win the battle for future passengers"

Train competitiveness: performance density

- PM motor
 - General: low rotor losses
 - Number of poles → active volume
 → max torque
 - Cooling
 - Thermal performance
 - Cooling channel, external fan
 - At high speed
 - IPM = buried magnets → reluctance torque contribution
- Propulsion system
 - IPM → can be optimized for high converter utilization

Performance at speed record 2008

Train competitiveness: high speed tests

Two MITRAC PM motors replaced four induction motors at the Nordic speed record 303 km/h 14th September 2008

Gröna Tåget PM motor: Self ventilated, efficiency 97% Compared to Regina conventional motor:

- Same weight, appr same outer dimensions, mechanically interchangeable
- Max tractive effort from one PM-motor 2.6 times higher than ASM at 300 kph

Environmental performance: motor efficiency

- High efficiency, especially in vehicle operation
 - Maintained at low torque
 - Maintained in a large speed range
- ◆ High torque at high speed → increased possibility for regeneration of braking energy

Fit for the rigorous Nordic conditions

- Robust motor
 - PM technology introduced with a focus on robustness
 - Second generation of proven three phase motor design
- Electrically and mechanically compatible with proven systems
- Gröna Tåget offered unique testing opportunities
 - > 505 000 kms including challenging winter conditions

The Gröna Tåget research programme: a valuable opportunity

- Cooperation
 - KTH Electrical Energy Conversion, Juliette Soulard
 - Cross discipline contacts
- Testing opportunities
- Adding to our knowledge, indicating large future opportunities

Backups

MITRAC Permanent Magnet (PM) motor

Ongoing delivery projects

- BOMBARDIER OMNÉO
 Régio2N for SNCF (France)
 - Contract signed February 2010
 - Up to 860 doubledecker trains
 - Presently 129 trains sold to 6 regions
 - 140 km/h 200 km/h
 - Self-ventilated air cooled MITRAC PM motors
- BOMBARDIER TWINDEXX
 Doubledeckers for SBB (Switzerland)
 - Contract signed June 2010
 - 59 trains with option for 112 in addition
 - 160 km/h
 - Water-cooled MITRAC PM motors

MITRAC Permanent Magnet motor Summary main advantages of the MITRAC PM motor concept

Permanent Magnet Motors - part of *eco*⁴

Main challenges:

- Global Warming
- Energy Cost Increase
- Urbanization
- Demographic Change

- Energy
- Efficiency
- Ecology
- Economy

The Permanent Magnet Motor drive system is one of the solutions in the *CCO*⁴ portfolio

BOMBARDIER* MITRAC* Permanent Magnet Motor: Second Motor Generation For Selected Applications

- Improved overall vehicle optimization
- Optimized energy efficiency
- Reduced volume and weight

^{*}Trademark(s) of Bombardier Inc. or its subsidiaries.

ECO Energy – Efficiency – Ecology - Economy

Modelling and investigation of turn-to-turn winding failure in PM traction motors

Docent Juliette Soulard, KTH

part-time at Bombardier 20% Jan-April 2008 + supervision of

Wallerand Faivre d'Arcier, Laurent Sérillon, Ecole Navale de Brest

final degree project 30 ECTS, Sept-Dec 2007

Johan Smeets, University of Eindhoven

internship 13 ECTS, Sept-Dec 2008

KTH Results:

Original models (FEM + analytical) describing the development of the winding failure from initial local short-circuit to detection of failure by existing protection system in the inverter

2 reports + one conference article (ICEM 2010)

